SER-109 and the Prevention of Clostridium difficile Infection (CDI) in Patients with Multiple Recurrent Infections

Barbara McGovern, MD
VP Medical Affairs, Seres Therapeutics
Associate Professor of Medicine, Tufts University
August 2015
SER-109 and the Prevention of Recurrent *Clostridium difficile* infection (CDI)
SER-109 and the Prevention of Recurrent *Clostridium difficile* infection (CDI)

- The foundation for the SER-109 development program is based on scientific knowledge that has emerged on the importance of the human microbiome in states of health and disease.
The Human Microbiome Project
The Human Microbiome Project

• The Human Microbiome Project has shown that 100 trillion bacteria live in a healthy person’s gut

• The diversity of the bacteria in our gut help us live a healthy life by:
 • Breaking down sugars
 • Releasing energy from dietary sources
 • Building up proteins
 • Reducing inflammation
 • Other important functions
The classification system for Bacteria
Bacteria are ranked within different “Phyla” which is the broadest and most inclusive category within the microbiome.
The classification system for Bacteria

- Bacteria are ranked within different “Phyla” which is the broadest and most inclusive category within the microbiome.
The classification system for Bacteria

- Bacteria are ranked within different “Phyla” which is the broadest and most inclusive category within the microbiome.
- Although there are more than 50 identified bacterial phyla to date, only a few dominate in the healthy gut microbiome, including the:
The classification system for Bacteria

- Bacteria are ranked within different “Phyla” which is the broadest and most inclusive category within the microbiome.

- Although there are more than 50 identified bacterial phyla to date, only a few dominate in the healthy gut microbiome, including the:
 - Firmicutes
The classification system for Bacteria

- Bacteria are ranked within different “Phyla” which is the broadest and most inclusive category within the microbiome.
- Although there are more than 50 identified bacterial phyla to date, only a few dominate in the healthy gut microbiome, including the:
 - Firmicutes
 - Bacteroidetes
The classification system for Bacteria

- Bacteria are ranked within different “Phyla” which is the broadest and most inclusive category within the microbiome.
- Although there are more than 50 identified bacterial phyla to date, only a few dominate in the healthy gut microbiome, including the:
 - Firmicutes
 - Bacteroidetes
- Thus, there is great similarity among the phyla that exist among healthy persons.
There is no single “healthy microbiome”
There is no single “healthy microbiome”

- On the family, genus and species level, there is a wide variety of what constitutes “health” from person to person.
There is no single “healthy microbiome”

• On the family, genus and species level, there is a wide variety of what constitutes “health” from person to person
There is no single “healthy microbiome”

• On the family, genus and species level, there is a wide variety of what constitutes “health” from person to person
• This is likely influenced by host genetics, the immune system, and the person’s age, environment and diet. Microbial coadaptation may be important as well.
There is no single “healthy microbiome”

• On the family, genus and species level, there is a wide variety of what constitutes “health” from person to person

• This is likely influenced by host genetics, the immune system, and the person’s age, environment and diet. Microbial coadaptation may be important as well.

• Thus, there is no single profile of a “healthy microbiome”
Diversity vs Function

• Although there may be wide diversity in the gut microbiome, there is functional redundancy….

Community A

Community B

Community C

Metabolism of sugars
Although there may be wide diversity in the gut microbiome, there is functional redundancy. The microbiome as a functional organ is similar among healthy individuals in terms of metabolism of sugars.
Where does Clostridia fit in the scheme of things?
Where does Clostridia fit in the scheme of things?

- *Clostridium difficile* is one of the Firmicutes, which includes other spore-forming bacteria
Where does Clostridia fit in the scheme of things?

- *Clostridium difficile* is one of the Firmicutes, which includes other spore-forming bacteria
- Within the Firmicutes, there are many other bacteria that are essential to the health of the host, including many helpful Clostridia. Thus, only some Clostridial species are potentially harmful.
Antibiotics harm the healthy gut microbiome
Antibiotics harm the healthy gut microbiome

• We know that the leading risk factor for CDI are antibiotics, which disrupt the gut microbiome by wiping out important bacteria that live normally in a healthy person
Antibiotics harm the healthy gut microbiome

- We know that the leading risk factor for CDI are antibiotics, which disrupt the gut microbiome by wiping out important bacteria that live normally in a healthy person
 - Antibiotic use leads to a less diverse population of bacteria
Antibiotics harm the healthy gut microbiome

- We know that the leading risk factor for CDI are antibiotics, which disrupt the gut microbiome by wiping out important bacteria that live normally in a healthy person
 - Antibiotic use leads to a less diverse population of bacteria
- Hypothesis: This lack of diversity allows *C. difficile* to flourish and cause inflammation of the gut with diarrheal disease.
A microbiome with low diversity appears to be the perfect environment for *Clostridium difficile*
A microbiome with low diversity appears to be the perfect environment for *Clostridium difficile*

- How does the low diversity of the microbiome allow *Clostridium difficile* to flourish? This is a pressing research question but some possibilities include:
A microbiome with low diversity appears to be the perfect environment for *Clostridium difficile*

- How does the low diversity of the microbiome allow *Clostridium difficile* to flourish? This is a pressing research question but some possibilities include:
 - Opening up a space for *C difficile* to live (an “ecologic niche”)
A microbiome with low diversity appears to be the perfect environment for *Clostridium difficile*

How does the low diversity of the microbiome allow *Clostridium difficile* to flourish? This is a pressing research question but some possibilities include:

- Opening up a space for *C difficile* to live (an “ecologic niche”)
- Eliminating bacterial competition for nutrients that *C difficile* needs to live and replicate
A microbiome with low diversity appears to be the perfect environment for *Clostridium difficile*

- How does the low diversity of the microbiome allow *Clostridium difficile* to flourish? This is a pressing research question but some possibilities include:
 - Opening up a space for *C. difficile* to live (an “ecologic niche”)
 - Eliminating bacterial competition for nutrients that *C. difficile* needs to live and replicate
 - Increasing the populations of bacteria that help *C. difficile* spores to germinate and cause disease
A microbiome with low diversity appears to be the perfect environment for *Clostridium difficile*

- How does the low diversity of the microbiome allow *Clostridium difficile* to flourish? This is a pressing research question but some possibilities include:
 - Opening up a space for *C difficile* to live (an “ecologic niche”)
 - Eliminating bacterial competition for nutrients that *C difficile* needs to live and replicate
 - Increasing the populations of bacteria that help *C difficile* spores to germinate and cause disease
 - *These concepts form the underlying rationale for the development of SER-109 to prevent recurrent C. difficile infection*
What is SER-109?

- SER-109 is an ecology of approximately 50 bacterial spores
- The spores are enriched from stool donations obtained from healthy, screened donors
- SER-109 has been shown to prevent recurrence of CDI in preclinical studies in animals
Why does SER-109 only use spores?

- Advantages of spores
 - Dormant forms of bacteria that are very hearty
 - Resistant to air, heat and many solvents
 - In the manufacturing of SER-109, we are able to use ethanol which kills other potentially harmful germs, including bacteria, fungi and viruses
 - *But the spores remain intact*
 - The potential for transmission of harmful pathogens is dramatically reduced
Why use only spores?

- The number of spores can be measured and calculated based on the composition of the spore wall
 - This provides consistency of dosing
 - These spores also represent only a fraction (<0.1%) of the complex species of organisms found in stool that have been identified to date (and many more that have not), thus allowing a more focused therapeutic approach
- In general, spores are resistant to stomach acid allowing them to reach the intestine where they can germinate and grow into a living ecology of bacteria.
- SER-109 is formulated into capsules for oral delivery
Donor Screening

- Lean donors <50 years of age undergo rigorous screening process including:
 - A thorough medical and family history
 - A general physical examination
 - Laboratory screening to eliminate donors with any signs of metabolic abnormalities (elevated sugars or fats) or autoimmune diseases (like Rheumatoid arthritis or Lupus)
 - Donors also undergo screening of blood and stool for any sign of infection
SER-001: Study design

- Open-label study conducted at four US sites with two dosing arms (Cohort 1 and Cohort 2)
- Adult patients (18 to 90 years of age) with ≥3 CDI episodes in the previous 12 months
- Eligible patients:
 - Clinical response to CDI antibiotics immediately before enrollment
 - Able to give informed consent to receive a donor-derived product
Treatment Protocol

- Day-2: Antibiotics for CDI completed
- Day-1: Bowel lavage
- Day-0: Enter one of the SER-109 dosing arms
 - If during 8-week period following dosing, CDI recurred, repeat administration of CDI antibiotics followed by SER-109 was allowed
SER-001: An investigative study evaluating SER-109 for prevention of recurrent CDI

Efficacy phase

- The primary efficacy measure was the ability of SER-109 to prevent recurrent CDI up to 8 weeks after dosing
 - CDI recurrence was defined as >3 unformed bowel movements in a 24-hour period with laboratory confirmation of *C. difficile* in the stool
SER-001: An investigative study evaluating SER-109 for prevention of recurrent CDI

Safety phase:

• Adverse events, laboratory values, vital signs, and physical examination findings were measured before and after SER-109 dosing over 24 weeks
Secondary objectives: Alterations in Gut Microbiota Composition

- The impact of SER-109 on the gut microbiome was examined by looking at microbial diversity - the number of different types of organisms in the gut.
Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>COHORT 1</th>
<th>COHORT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>64.7</td>
<td>59.1</td>
</tr>
<tr>
<td>GENDER</td>
<td>10 (66.7%)</td>
<td>10 (66.7%)</td>
</tr>
</tbody>
</table>
Primary endpoint achieved in 26 of 30 patients (86.7%)

Patients with recurrent CDI responsive to antibiotics (n=30)

Cohort 1 (n=15)
- Approximate mean dose \(10^{9}\) spores

Cohort 2 (n=15)
- Approximate mean dose \(10^{8}\) spores

Primary Endpoint

Achieved

Cohort 1 (n=13)

Cohort 2 (n=2)

Cohort 1 (n=2)

Cohort 2 (n=13)

Only 1 patient required more than one SER-109 treatment
What happened to the four patients who did not meet the primary endpoint?

1 patient with recurrent diarrhea declined re-dosing with SER-109 and left study

Cohort 1 (n=2)
Cohort 2 (n=2)

—3 patients had transient diarrhea that resolved without CDI treatment
—Testing for *C. difficile* negative at week 8
Clinical Resolution Achieved in 29 of 30 patients (96.7%)

Patients with recurrent CDI responsive to antibiotics (n=30)

Cohort 1 (n=15)
Approximate mean dose 10(9) spores

Yes
Achieved Primary Endpoint (n=13)

No
Cohort 1 (n=2) Cohort 2 (n=2)

—3 patients had transient diarrhea that resolved without treatment for CDI
—Testing for *C. difficile* negative at week 8

Cohort 2 (n=15)
Approximate mean dose 10(8) spores

Yes
Achieved Primary Endpoint (n=13)

No

1 patient declined re-treatment
Adverse Events during 24 weeks of follow-up

• The most common drug-related adverse events included mild diarrhea, nausea and abdominal pain, which occurred mainly within the first 3 days following dosing.

• Seven serious adverse events documented in four patients considered not to be drug-related by the investigators.
Did any patients have recurrent CDI during the safety phase? (weeks 8-24)

29 patients entered safety phase

- 1 patient left for personal reasons
- 2 patients were lost to follow-up

26 of 29 patients completed the safety phase

- 1 patient relapsed without clear risk factors
- 2 patients relapse after non-CDI antibiotics
- 23 without CDI recurrence
Improvements in the Microbiome Occurred in Parallel with Clinical Resolution

SER-109 increases the microbiome diversity towards the level of diversity seen in healthy donors.

Chao-1 Diversity Index

- Pre-SER 109
- 8 weeks post SER-109
- Healthy Donors
Summary of SER-109 profile
Summary of SER-109 profile

- The primary endpoint of prevention of CDI recurrence was achieved in 86.7% of patients who were high risk of relapse
 - Clinical resolution observed in 29 of 30 patients
Summary of SER-109 profile

- The primary endpoint of prevention of CDI recurrence was achieved in 86.7% of patients who were high risk of relapse
 - Clinical resolution observed in 29 of 30 patients
- Adverse events included mild diarrhea, nausea and abdominal pain
Summary of SER-109 profile

- The primary endpoint of prevention of CDI recurrence was achieved in 86.7% of patients who were high risk of relapse
 - Clinical resolution observed in 29 of 30 patients
- Adverse events included mild diarrhea, nausea and abdominal pain
- Clinical improvement occurred in parallel with remodeling of the gut microbiome supporting hypothesis that a low diversity state is the root cause of CDI
Summary of SER-109 profile

- The primary endpoint of prevention of CDI recurrence was achieved in 86.7% of patients who were high risk of relapse.
 - Clinical resolution observed in 29 of 30 patients.
- Adverse events included mild diarrhea, nausea and abdominal pain.
- Clinical improvement occurred in parallel with remodeling of the gut microbiome supporting hypothesis that a low diversity state is the root cause of CDI.
- Limitations of this trial are its small size and lack of a placebo-controlled design.
What’s next?
A phase 2 trial: SERES-004
What’s next?
A phase 2 trial: SERES-004

- Based on data submitted to FDA, SER-109 has been granted “breakthrough designation”
What’s next?
A phase 2 trial: SERES-004

● Based on data submitted to FDA, SER-109 has been granted “breakthrough designation”
● A randomized, double-blind placebo-controlled study of SER-109 to prevent CDI in patients with a history of multiple recurrent infections
What’s next?
A phase 2 trial: SERES-004

● Based on data submitted to FDA, SER-109 has been granted “breakthrough designation”

● A randomized, double-blind placebo-controlled study of SER-109 to prevent CDI in patients with a history of multiple recurrent infections
 ● 87 subjects with recurrent CDI are enrolling in 35 sites in the US
What’s next?
A phase 2 trial: SERES-004

● Based on data submitted to FDA, SER-109 has been granted “breakthrough designation”

● A randomized, double-blind placebo-controlled study of SER-109 to prevent CDI in patients with a history of multiple recurrent infections
 ● 87 subjects with recurrent CDI are enrolling in 35 sites in the US
 ● Two treatment arms randomized 2:1 active drug: placebo
What’s next?
A phase 2 trial: SERES-004

- Based on data submitted to FDA, SER-109 has been granted “breakthrough designation”

- A randomized, double-blind placebo-controlled study of SER-109 to prevent CDI in patients with a history of multiple recurrent infections
 - 87 subjects with recurrent CDI are enrolling in 35 sites in the US
 - Two treatment arms randomized 2:1 active drug: placebo
 - Single dose of SER-109 is administered as 4 capsules following antibiotic treatment for CDI
What’s next?
A phase 2 trial: SERES-004

- Based on data submitted to FDA, SER-109 has been granted “breakthrough designation”
- A randomized, double-blind placebo-controlled study of SER-109 to prevent CDI in patients with a history of multiple recurrent infections
 - 87 subjects with recurrent CDI are enrolling in 35 sites in the US
 - Two treatment arms randomized 2:1 active drug: placebo
 - Single dose of SER-109 is administered as 4 capsules following antibiotic treatment for CDI
- Primary endpoints are safety and efficacy
SER-004: Exploratory Objectives

• Compare the changes in the microbiome before and after SER-109
SER-004: Exploratory Objectives

• Compare the changes in the microbiome before and after SER-109

• Compare any changes in the numbers of drug resistant bacteria and fungi present before and after SER-109
SER-004: Exploratory Objectives

• Compare the changes in the microbiome before and after SER-109
• Compare any changes in the numbers of drug resistant bacteria and fungi present before and after SER-109
• Examine the numbers of deaths and hospitalizations among patients treated with SER-109 versus those treated with placebo
SER-004: Exploratory Objectives

- Compare the changes in the microbiome before and after SER-109
- Compare any changes in the numbers of drug resistant bacteria and fungi present before and after SER-109
- Examine the numbers of deaths and hospitalizations among patients treated with SER-109 versus those treated with placebo
- Assess measures of quality of life and health outcomes through week 24 after dosing of SER-109 vs placebo